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Project context 

The PACSMAC project is a 5-year collaboration between Copenhagen Business School, the University of 

Dar es Salaam, Jimma University, Lafayette College, and ESADE Business School. The project aims to 

investigate how climate change – and the ways actors across the value chain are trying to adapt to or 

mitigate it – affect coffee farmers’ livelihoods and land-use decisions. Work package 1 is dedicated to 

understanding: 1) How might climate change itself, alongside the mitigation and adaptation efforts 

intended to address it, affect the governance of coffee value chains originating in Ethiopia and Tanzania? 

And 2) How do these changes affect the distribution of value along the chain, upgrading opportunities and 

farmer livelihoods? 

  

https://pacsmac.com/
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Introduction 

The Paradoxes of Climate-Smart Coffee (PACSMAC) project, introduced more fully in PACSMAC Project 

Working Paper 1.3, investigates how Ethiopia and Tanzania’s smallholder coffee producers and their 

respective value chains have been and are likely to be affected by climate change; document patterns of 

existing adaptive responses on the part of smallholders and their value chains; and explore potential 

future strategies for promoting equitable resilience in the smallholder coffee sectors in these two 

countries. Two central methods for collecting data to support this work are a household livelihood survey 

and focus group discussions in sampled coffee-producing communities in the two countries. This working 

paper summarizes the site selection strategy developed to identify an appropriate sample of communities 

in which to conduct the project’s fieldwork. After explaining the site selection rationale, the paper 

presents some basic information on the sampled communities constructed from publicly available 

geospatial data. 

Site Selection Strategy 

To select appropriate sample sites in the two countries, the project members adopted a two-stage 

strategy. First, we selected study regions in the two countries based on levels of coffee production. Here, 

the objective was to sample the regions in the two countries where the highest levels of smallholder 

coffee production took place. In Tanzania, an additional factor in region-level site selection was the 

dominant cultivar. Unlike in the case of Ethiopia, Tanzania has a substantial area of robusta production, 

creating an additional important variable to consider in site selection. After selecting these regions, we 

used governmental data on coffee production from Ethiopia and estimates of suitable elevations for 

coffee cultivation in Tanzania (Tanzania Coffee Board, 2019) to identify only communities in the selected 

regions engaged in coffee production.  

After selecting the study regions and restricting the population to smallholder-coffee-cultivating 

communities, we were ready for the second stage of sampling. There are a wide range of strategies that 

can be employed in selecting appropriate sites for a study like ours. For example, were the project’s 

objective to test the effect of community-level treatment variables on a set of outcomes, then an 

appropriate strategy might be to create a matched sample, selecting samples of treatment and control 

sites with similar values on a set of potential confounding variables. In PACSMAC’s case, however, the 

bulk of our key expectations have to do with the relationship between household characteristics and 

adaptation strategies, meaning that our primary “treatment” variables vary within communities, in 

addition to across communities. Because a key project objective is to identify the range of adaptation 



PACSMAC Work package 1 & 2, Working paper 2.1 

3 

strategies smallholder farmers in Ethiopia and Tanzania have adopted or might adopt in the future, as well 

as the ways that value chains are adjusting to climate change and changes in smallholder strategies in 

these places, our primary concern at the level of site selection is to ensure that the selected sites are 

representative of the range of the most important geophysical factors likely to push smallholders to adopt 

new strategies.  

Because the core research questions for the PACSMAC project relate to smallholder farmers’ and value 

chains’ responses to climate change, our central concern was to construct a sample of communities 

representative of the range of experiences of climate change in the study regions. In addition, because 

there is strong evidence that the impact of climate change on coffee cultivation is likely to be moderated 

by elevation (Ovalle-Rivera et al. 2015; Bunn et al. 2015), we also designed our sample selection to be 

representative of the range of elevations in the study regions. We explain the steps of this sampling 

procedure in more detail in the remainder of this section. 

The selection of study sites in Tanzania was based on coffee species and production levels. For the Robusta 

coffee, we selected the Kagera region (Northwest) because it is the leading Robusta coffee producer in 

the country. For the Arabica coffee, we selected Ruvuma and Songwe (both in the south), and Kilimanjaro 

(North). The southern regions were selected because they are currently the leading Arabica producers 

and recipients of coffee interventions (including climate adaptation interventions). Indeed, it was crucial 

to include the Kilimanjaro region because of its historical legacy in the coffee sector despite its significant 

drop in coffee production (Tanzania Coffee Board, 2021). Further, we also selected one representative 

district from each region following similar criteria used in the region selection. Thus, we selected four 

districts of  Kyerwa (Kagera region), Mbozi (Songwe region), Mbinga (Ruvuma region), and  Rombo 

(Kilimanjaro region).    

Following district selection, it was necessary to identify appropriate sample communities within each 

district. This meant that we needed to operationalize indicators for climate change impacts and elevation, 

our primary exogenous and moderating variables. First, it was necessary to identify the spatial units that 

we would be using to represent communities. This is not as straightforward a task as it might at first 

appear, as Ethiopia and Tanzania have rather different jurisdictional structures, with the result that the 

relevant geographic units in Ethiopia are typically larger than their Tanzanian counterparts. In Ethiopia, 

we selected the kebele as the appropriate community unit. Kebeles are the smallest formal administrative 

units having a neighborhood or a localized and delimited group of people. In Tanzania, we selected the 

village as the corresponding spatial unit responsible for organizing small-holder farmers and where local-
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level coffee marketing institutions are located.  Study villages were then randomly selected at high, 

middle, and low elevation levels based on coffee farming, high precipitation change, and the existence of 

coffee marketing societies. Consequently, eight villages were selected in each study district, with three 

villages at higher and medium elevations, and two at lower elevations. Selection of villages at different 

altitudinal gradients intended to capture the intensity of coffee production, climate change experiences, 

and corresponding adaptation strategies by small-holder farmers at such levels.    

While there are numerous ways climate change is presently affecting coffee cultivation, and more ways it 

might do so in the future (see PACSMAC Working paper 1.2), a key factor that emerged in preliminary 

field interviews is altered rainfall timing and variability. Changes in the level and timing of rainfall can 

cause several problems for smallholder coffee farmers. This is the case not only for growing coffee cherries 

on the bush but also for the preparation process. Ill-timed rainfall, as several preliminary interviews 

pointed out, can wreak havoc on coffee drying. In the longer term, changes in temperature regimes also 

threaten the expansion of crop diseases and pests.  

Based on this initial information, we developed a strategy to identify the range of experiences of changes 

in precipitation variability across communities in the selected regions. To construct this measure, we 

collected monthly data from the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) 

dataset (Funk, et al., 2015). The dataset combines data from worldwide precipitation monitoring stations 

and remote sensing. The approach uses satellite imagery to create precipitation estimates that are then 

compared to interpolated estimates based on precipitation-monitoring station data for bias correction. 

The result is a coarse resolution (0.05°) estimate of monthly precipitation starting in 1980. While these 

data are invaluable, it is important to note that because they are at a relatively coarse resolution, they 

may fail to capture some microclimatological variation in the study areas. 

To use these data to create an index of precipitation change that would combine information on both 

differences in the total amount and temporal variability of precipitation, we decided to compare the mean 

absolute difference between typical monthly precipitation for our study sites at present with the monthly 

precipitation in those areas for the earliest years available from the CHIRPS dataset. To accomplish this 

objective, we downloaded monthly CHIRPS estimates for 1981 through 1985 and 2017 through 2021. We 

then computed the monthly mean precipitation per pixel. We then computed the absolute difference in 

mean monthly rainfall for each month between the 1980s estimates and those for the most recent five 

years of data before computing the mean of these absolute values. The result was a high-resolution raster 

dataset whose pixels include estimates of the mean difference between contemporary monthly 
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precipitation levels and those that were observed 36 years prior. We then aggregated the mean of these 

values to the community level using zonal statistics (that is, we computed the mean value of all pixels that 

fell within the borders of each community). 

Elevation was our second key variable for site selection. Here, the procedure was somewhat simpler. We 

downloaded elevation data from the Shuttle Radar Topography Mission at an approximately 90-meter 

resolution (Farr, et al., 2007). We then computed the mean elevation for each community using zonal 

statistics. 

An important point informing our research design choices is that the literature leads us to expect that 

climate change and elevation’s impacts on coffee production will be interactive. In other words, we expect 

coffee farmers to face different pressures from the same climatic changes depending on the elevation at 

which they are cultivating. After calculating these values for each community in the selected regions in 

each country, therefore, the next step was to generate a sample of sites that would be sufficiently 

representative of these regions’ combinations of elevation and climate change experiences. 

To accomplish this objective, we first divided the communities in each country into quintiles (that is, five 

groups of equal size arranged along the range of a variable) according to their mean absolute monthly 

precipitation deviation and their elevation. First, we identified all observed combinations of the lower (up 

to 20th percentile), middle (above 40th and below 60th percentile), and upper (above 80th percentile) 

values on these two variables across the communities in each country. This generated a total of nine 

different classes (three quantiles of precipitation deviation times three quantiles of elevation). To ensure 

that the sampled sites in each country covered all combinations of the selected quintiles of precipitation 

deviation and elevation, it was necessary to ensure that the final sample of communities in each country 

included at least one community from each of these nine classes. 

After the list of all communities in the selected regions in each country that fell into one of the nine classes 

described in the previous paragraph was compiled, we summarized some additional data on these 

communities from openly available geospatial data to provide additional context to aid in site selection: 

● Mean forest cover as of 2000, computed from the GLAD dataset (Hansen, et al., 2013), which we 

used as an indicator of the potential for shade-grown coffee expansion 

● Total square kilometers of forest cover loss from 2000 to 2018 as a proportion of total area, 

computed from the GLAD dataset (Hansen, et al., 2013), which we use as an indicator of pressure 

on local forests 
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● Change in land area under crops from 2003 to 2019, as a proportion of cropland in 2003, 

computed using data from Potapov, et al. (2022), which we use as an indicator of competition for 

land 

● Median travel time to a city of at least 50,000 people, in minutes, computed using data from the 

Malaria Atlas Project (2015), which we use as an indicator of market exposure 

● Proportion of total area falling within protected areas listed in the World Database on Protected 

Areas (UNEP-WCMC & IUCN, 2021), which we use as an indicator of ecosystem value and 

competition for land 

While it is certainly possible that some or all of these variables might also interact with climate change 

and elevation, budgetary limitations, as well as the actual distribution of these variables across 

communities, made it impossible to generate a sample of sites that would include combinations of the 

lower, middle, and upper quintiles of all these variables (this would be 37, or 2,187 different 

combinations). Nevertheless, we felt it to be important to have these measures available during the site 

selection process to avoid constructing samples that were inadvertently highly unbalanced on one or 

more of these variables. 

For the final phase of site selection, we took the list of all communities in the selected regions in the two 

countries, along with data denoting their quintile for each of the variables outlined above. Using this 

information, we created maps of the possible sites from which a sample could be generated for each 

region. Figure 1 presents an example of these maps. Maps for each selected region were distributed to 

the country teams along with the summary dataset. Drawing on the preliminary interviews, their own 

local knowledge, and taking into consideration budgetary constraints, the country teams selected eight 

communities in each selected region, for a total of 30 communities in each country, such that the resulting 

sample included at least one village for each combination of the lower, middle, and upper quintiles for 

precipitation deviation and elevation in the country and, to the extent possible given budgetary and 

logistical constraints, maximized variation on the other contextual variables. During fieldwork, it became 

necessary to adjust the selection again in some instances due to inaccessibility to some sampled areas 

due to landslides or similar problems or because the team discovered that coffee was not grown in the 

sampled area. We provide some detail on our final samples in the following section. 



PACSMAC Work package 1 & 2, Working paper 2.1 

7 

 

Figure 1. Example of a map of possible sites from which to select a sample in Gera, Ethiopia. 

Sample Overview 

This section summarizes the key contextual variables we used for site selection across the sampled 

communities in each country, comparing these values to the values for the population of communities in 

the selected regions as a whole. While the site selection strategy outlined above did successfully produce 

representative samples on the most important variables of mean precipitation deviation and elevation, 

there are some key contextual variables on which the samples differ from the population mean or 

distribution. While these differences do not necessarily undermine the potential conclusions that we can 

draw regarding the interaction between elevation and precipitation changes, they could constrain the 

generalizability of certain findings if the processes in question are closely linked to the unrepresentative 

variables. 
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Figure 2. Location of selected study regions in Ethiopia and Tanzania. 

Figure 2 presents the selected study regions in Ethiopia and Tanzania (see the Appendix for a complete 

list of selected kebeles/villages). One important note is that due to budgetary constraints, it became 

necessary to reduce study region selection in Tanzania from an initially planned six sites to four. This 

decision came after the initial calculation of quintile groupings for sampling, with the result that the 

sampled villages in Tanzania are representative of the range of elevation and precipitation deviation 

observed in all major smallholder coffee regions in the country. In the following, unless specifically noted, 

the comparisons of the sample to the population for Tanzania refer to the population of villages in the 

four selected regions in Figure 2, rather than all six villages. 

Ethiopia 

Figure 3 presents the distribution of the key contextual variables used to inform site selection for the 

sampled kebeles in Ethiopia and permits comparison with the overall population of villages in the selected 

regions. The figure highlights the substantial variation in several of the key variables observed across the 

sampled communities. In the case of the precipitation deviation measure, for example, the most affected 

communities are experiencing more than twice the deviation of the least affected, a substantial amount 

of up to around 100 mm of precipitation, on average, per month, as compared to the early 1980s. We also 

find dramatic variation in forest cover, with some kebeles boasting as much as an 80% forest canopy, 

while others are nearer 25%.  
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Figure 3. Boxplots of key contextual variables for sampled kebeles in Ethiopia as compared to the overall 

population of kebeles in the selected study regions. The left-hand side of the box designates the lower 

quartile of the variable, the line in the middle of the box the median, and the right-hand-side of the box 

the upper quartile. The whiskers on the box show all observations within 1.5 times the interquartile range 

of the sides of the box, while the dots show individual outliers. 

Some results might at first appear puzzling. For example, how can it be that there have been such dramatic 

fluctuations in cropland cover in some kebeles?1 Here, it is important to remember that we measure 

fluctuations in cropland cover relative to the amount of cropland in the kebele as of 2003. In some cases, 

this initial number was very low, so over a 100% change in either direction may be dramatic in relative 

terms, but it is more modest in absolute terms. Similarly, we find cases where 100% or more of the 

kebele’s area is part of a WDPA-listed protected area. The values over 100% reflect cases where ostensible 

boundaries of multiple protected areas overlap, resulting in double-counting.  

Figure 3 also highlights the variables for which the sample is representative of the overall population of 

kebeles and those areas where it is less so. By design, the sample is most representative of the overall 

variation in elevation and precipitation deviation, with the median value for these variables in the sample 

very close to that for the population as a whole. The sample is similarly close to the population distribution 

of travel time to the nearest city of at least 50,000 people. The sample does have slightly higher forest 

cover and, as a result, lower crop area change and higher forest cover area change than the population as 

a whole. 

 
1 We should note here that for presentational purposes, Figure 3 excludes some even more extreme 
outliers that, if plotted, would make it impossible to visually compare the bulk of the distributions for 
percentage changes in crop lands. 

Commented [1]: Could this also be because of some of 
the semi-autonomous ethnic protected areas in 
Oromia? 
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Table 1 confirms the visual evidence that the sampled kabeles are broadly representative of the 

population of kebeles in the study regions. It presents t-tests comparing the population to the sample 

mean for each of our key contextual variables. Here, we find a few key differences that will be important 

to consider in interpreting the results of the fieldwork. First, the sampled kebeles have statistically 

significantly higher protected area coverage and tree loss than the population of kebeles in the selected 

regions. We find no statistically significant differences between the mean value of any of these variables 

for the sample versus the population as a whole. 

Variable t-statistic t-statistic p-

value 

Kolmogorov-Smirnov 

Statistic 

KS-statistic p-

value 

Crop Area Change, 

2003-2019 (% of 2003) 

0.25 0.81 0.14 0.63 

Forest Cover, 2000 (%) -0.85 0.4 0.21 0.19 

Mean Elevation (m) 0.85 0.4 0.1 0.94 

Mean Precipitation 

Deviation (mm), 

1981-1985 vs. 2017-2021 

0.36 0.72 0.16 0.47 

Median Travel Time 

to Nearest City (min.) 

0.2 0.84 0.11 0.89 

Protected Areas 

(% of Area) 

-1 0.31 0.14 0.49 

Tree Loss, 

2000-2020 (% of Area) 

0.57 0.57 0.14 0.66 

Table 1. Comparison of key contextual variables for sampled kebeles to the population of kebeles in the 

selected regions in Ethiopia as a whole. T-statistics compare population to sample mean (i.e., if the t-

statistic is negative, this implies that the mean is higher in the sample than the population) and 

Kolmogorov-Smirnov statistics test the hypothesis that the sampled distribution of each variable differs 

from the population distribution. 

Table 1 also reports Kolmogorov-Smirnov tests comparing the distribution of each variable for the sample 

and the population, finding, again, no statistically significant differences. Taken together, the results from 

the two tests indicate that the sampling strategy was effective in generating a set of kebeles that are 

broadly representative of the study regions on a range of relevant contextual variables. 
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Figure 4. Correlations between key contextual variables for sampled kebeles in Ethiopia. 

Figure 4 provides additional context to the characteristics of the sampled kebeles by comparing the 

correlations between the key contextual variables used to make the sample. The figure demonstrates 

some clear patterns across elevation levels, with higher elevations, not surprisingly, tending to have less 

change in crop areas, higher travel times to the nearest city of 50,000 persons or more, higher forest 

cover, and, in part simply because forests make up a larger percentage of land area, higher forest loss as 

a percentage of total area. Also not surprisingly, protected area coverage is highly correlated with forest 

cover. 
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Figure 5. Differences between the correlations between key contextual variables across all kebeles in the 

selected regions and the correlations between key contextual variables for the sampled kebeles (that is, 

positive numbers indicate a higher correlation between the variables in the sample than the population, 

while negative numbers indicate the opposite). 

Figure 5, however, indicates that the correlations observed in the sample are quite similar to the 

correlations between these variables in the overall population. It presents the difference between the 

correlations between key contextual variables presented in Figure 3 and those same correlations in the 

population as a whole. Reassuringly, the differences are not very large, though the fact that the correlation 

between elevation and precipitation deviation in the sampled kebeles is about 0.3 higher than in the 

population as a whole suggests there could be a greater diversity in experiences of these variables across 

the study areas than the sample fully captures. 

Tanzania 

Turning to Tanzania, Figure 7 presents the distribution of the key contextual variables for the sampled 

villages in the country as compared to the population of villages in the target region. As in Ethiopia, there 

is, by design, substantial variation on the two most important variables - elevation and precipitation 

deviation. Some of the other variables, however, are more constrained than in the Ethiopian sample. The 

range of forest canopy cover, for example, is lower in the sampled villages in Tanzania, as, generally, is 
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protected area coverage. As in the Ethiopian sample, we see some dramatic (relative) changes in cropland 

in some villages, though again from quite low initial levels. 

 

Figure 7. Boxplots of key contextual variables for sampled villages in Tanzania as compared to the overall 

population of villages in the selected study regions. The left-hand side of the box designates the lower 

quartile of the variable, the line in the middle of the box the median, and the right-hand-side of the box 

the upper quartile. The whiskers on the box show all observations within 1.5 times the interquartile range 

of the sides of the box, while the dots show individual outliers. 

Figure 7 also suggests that the sampled villages are broadly representative of the population of villages in 

the study regions in Tanzania. By design, the distribution of villages by elevation is very similar to the 

population, though the sample maximum is lower than some substantial outliers in the population, largely 

due to these region’s inaccessibility to the research team. The final selection also excludes some of the 

highest and lowest values of precipitation deviation observed across the population of villages in the study 

regions. These limitations must be considered when generalizing the results of the survey, which may not 

be fully representative of dynamics in a handful of geographically unique villages in the study regions. 

Variable t-statistic t-statistic p-

value 

Kolmogorov-Smirnov 

Statistic 

KS-statistic p-

value 

Crop Area Change, 

2003-2019 (% of 2003) 

0.85 0.4 0.12 0.78 

Forest Cover, 2000 (%) -0.96 0.35 0.24 0.058 

Mean Elevation (m) 0.74 0.46 0.098 0.94 
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Mean Precipitation 

Deviation (mm), 

1981-1985 vs. 2017-2021 

-1.6 0.12 0.2 0.17 

Median Travel Time 

to Nearest City (min.) 

-0.07 0.94 0.15 0.54 

Protected Areas 

(% of Area) 

-0.23 0.82 0.08 0.99 

Tree Loss, 

2000-2020 (% of Area) 

1.5 0.13 0.17 0.32 

Table 2. Comparison of key contextual variables for sampled villages to the population of villages in the 

selected regions in Tanzania as a whole. T-statistics compare population to sample mean (i.e., if the t-

statistic is negative, this implies that the mean is higher in the sample than the population) and 

Kolmogorov-Smirnov statistics test the hypothesis that the sampled distribution of each variable differs 

from the population distribution. Boldfaced values are statistically significant at the 0.05 level. 

Table 2 presents t-tests comparing the population to the sample mean and Kolmogorov-Smirnov tests 

comparing the sample and population distributions for each of our key contextual variables. As in the 

Ethiopian case, we find no statistically significant differences in the means of any of our contextual 

variables between the sample and the population. However, we do find one instance where the 

Kolmogorov-Smirnov test is statistically significant: the distribution of forest cover in the sample differs 

substantially from the population. Referring to the boxplots in Figure 7, it is relatively clear that the 

variation of forest cover in the sampled villages is lower and includes fewer extreme values than that in 

the population of villages as a whole. Similarly to our potential concerns with the sampled values of 

elevation noted above, the survey may not fully generalize to outliers on forest cover, which could 

represent areas with more potential land into which coffee or other crops might expand. As might be 

expected, there is also considerable overlap in the villages that are population outliers on elevation and 

forest cover. 
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Figure 8. Correlations between key contextual variables for sampled villages in Tanzania. 

Figure 8 shows that the correlations between the key contextual variables in Tanzania are generally low, 

with a few notable exceptions, some of which are quite surprising. First, accessibility to cities of more than 

50,000 people in this sample appears to be negatively correlated to forest loss (that is, forest loss, as well 

as cropland increase, is more common further from these cities). This could in part be due to a slight 

correlation between proximity to cities and the presence of protected areas, likely driven in particular by 

the protected areas around Mount Kilimanjaro. As would be expected, areas in higher elevations tend to 

be less accessible to cities and to have higher forest cover, more areas under protection, and lower rates 

of change in cropland extent. 
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Very interestingly, but fortunately for the purposes of inference, we find no correlation between mean 

elevation and precipitation deviation in the sample. This is a very interesting contrast with the Ethiopian 

case, where the two variables were strongly correlated. As can be seen in Figure 9, which compares the 

correlations between the key contextual variables in the population to the correlations in the sample, this 

(non-)relationship is likely a result of the sampling strategy. The correlation between the two variables is 

about 0.3 higher in the sample than the population, a relationship that again appears to be driven by a 

relatively small number of villages that are population outliers in terms of elevation, a group that also 

accounts for much of the difference in the population and sample correlations between elevation and 

protected areas and travel time to the nearest city and forest cover. Again, these findings suggest that 

researchers should take special care when considering generalizing the survey findings to the highest-

elevation villages in Tanzania.  
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Figure 9. Differences between the correlations between key contextual variables across all villages in the 

selected regions of Tanzania and the correlations between key contextual variables for the sampled 

villages (that is, positive numbers indicate a higher correlation between the variables in the sample than 

the population, while negative numbers indicate the opposite). 

Conclusion 

This working paper has presented the rationale behind the sample selection strategy adopted by the 

PACSMAC project. Using a variety of geospatial data, we have demonstrated that the sampling strategy 

has resulted in a set of sample communities in the two countries that are broadly representative of 

elevation and precipitation changes in Ethiopia and Tanzania’s smallholder-coffee-producing regions as a 

whole. Furthermore, the samples are also representative of the population of smallholder-coffee-

producing communities in the two countries on some other important contextual variables, as well. Still, 
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there are some respects in which correlations between key variables or cases where the sample deviates 

from the population merit further consideration as the fieldwork and subsequent analysis proceed, 

particularly in the case of the generalizability of the survey findings to the highest-elevation villages in 

Tanzania.  
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Appendix 

Appendix 1: Sampled Kebeles - Ethiopia 

District Kebele 

Ale Kundi 

Ale Jeto Koyami 

Ale Sambe Enole 

Ale Keto Gelecho 

Ale Gumero Abo 

Ale Yobi Mari 

Goma Tesosedecha 

Goma Ketabero 

Goma Koyuseje 

Goma Genjailbu 

Goma Kadimesa 

Goma Getobore 

Yayu Geri 

Yayu Wabo 

Yayu Bondawo 

Yayu Achebo 
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Yayu Hamuma 

Yayu Aredin Onigo 

Limu seka Mero Chisa 

Limu seka Sacheni 

Limu seka Atnago Town 

Limu seka Dale Wadera 

Limu seka Gejib 

Limu seka Koma 

Gera Wanija Kerisa 

Gera Sed Loya 

Gera Kola Kinbibit 

Gera Kele 

Gera Genida Chala 

Gera Gure Dako 
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Appendix 2: Sampled Villages - Tanzania 

District Village 

Mbozi Ipyana 

Mbozi Iyula 

Mbozi Ilomba 

Mbozi Mpito 

Mbozi Halungu 

Mbozi Igamba 

Mbozi Itentula 

Mbozi Nambinzo 

Mbinga Litembo 

Mbinga Mnyangayanga 

Mbinga Maguu 

Mbinga Utiri 

Mbinga Mkumbi 

Mbinga Ukata 

Mbinga Ngima 

Mbinga Buruma 
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Rombo Alleni Chini 

Rombo Manda Chini 

Rombo Mengwe Chini 

Rombo Shimbi Kati 

Rombo Machame Aleni 

Rombo Makiidi 

Rombo Mamsera Kati 

Rombo Mamsera Juu 

Kyerwa Kamuli 

Kyerwa Nyakatuntu 

Kyerwa Kikukuru 

Kyerwa Kakerere 

Kyerwa Iteera 

Kyerwa Kibare 

Kyerwa Karukwanzi A 

Kyerwa Murongo 

 


